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: Nunerical Solution of Inverse Problems -
E 2
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b Statement of Problems Studied f:
g It was proposed to derive efficient 3 dimensional mumerical algorithms for in- "2
L %
- version of model equations: in geophysics, for underground detection; and in ultra-
- sonic tomography, for accurate image reconstruction of a part of the interior of a '_4
human being. 4
r An appropriate model for both of the above problems is the Helmholtz equation
X model
ﬁ 3
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This is the simplest model vhich contains all of the difficulties that one encounters, .
even in the inversion of more complicated models, such as the Maxwell equations. o

The problem is to reconstruct the finction f , based on measuring u on the
boundary of the region.
Sumary of Most Important Results

We mention 3 results. The first two are important in applications, since they
are the only economically feasible methods we know of, for inverting genuine 3-

dimensional partisl differentisl equations. Ours are not only economically feasible,
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they are also optimally efficient based on mathematical results [1! obtained
under previous ARD sponsorship. The third result is important in the applications
of mathematics, since it explains how, and when the well-known rational fimction
algorithms work.

2

§1

In the case of ultrasonic tomography,
u denotes the sound pressure, c(¥) is
:_! the "'speed” of sound in the body B, ¢,
is the speed of sound in the medium
(usually a liquid) surrounding B , and
w denotes the frequency. In this case v
u = u satisfies the relation

i

o

b () ¢(k)511§103uk(§) I-:_:d - IP-T-F}'ds+oa<‘° ,k+w
8

A Je s . ‘o

where P is the path of sound from the source point 'z"s to the detector point r; .
F We have developed an effective method of reconstructing £ , based on any model
for which the sound pressure u, satisfies (4). Our method predicts ¢(=) = /p /I ds
. via a simple rational function algorithm. In practice uk(x?s) ad uy Ty may
be measured for all frequencies (recall k = w/cy , w = 2r x frequency) in (e.g.) the
range 1 megahertz < w/2w < 4 megahertz. Our experiments have shown that if u, (%))
and uk(r'd) are known accurately, then we can accurately reconstruct f via well-
known x-ray algorithms. In practice one has noise, and there is error in the
measurements. We have thus also developed a simple 9.1 procedure for circumventing
the effects of these errors. We are thus able to distinguish objects having a
diameter of about one wavelength and separated by about a wavelength.

A publication of these results will reach your office before Nov. 30, 1982.
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The author has also developed a procedure for reconstructing the finction £(¥) '-fif
f! in the equation (2) in the region {r = (x,y,z): z > 0} , assuming that u, (x,y,0) g
' is known for 0 < k < » . This latter procedure is based on a new formula for f,
{ some new approximations, and sinc approximation formulas developed by the author M
g .
! [1] under previous ARD support. It has the desirable feature that it requires no r:
:‘;‘ matrix inversion. Rather, the 3-dimensional problem '‘decouples” and requires only 1
l the numerical approximation of one and two dimensional integrals. A paper on this
\ procedure will reach your office before Dec. 20, 1982. v
530 T
Probably the author's most important discovery from a mathematical standpoint “":
is in the area of rational functions. We would not have been able to solve the
problem §1 above without this result. We first describe a special case of this ,
regult, and then point out its consequences. fk‘
(@ If p>1, q=p/(p-1) , if g 1is analytic in the wit disc U of 1
the complex plane, such that :
: 21 l/p
- 1 ie
: | | - ©
: ©) o, = lm G Io el P ap) T <
Lf
L:
L'
: vhere G(z) = 15%1 , then by taking
- -z
; 12 sinff (x-Kh)]
: (6 h = , SGeh)e() = —
¢ g (x-kh)
.‘ ™ z, = (-1/(E0+1)
& 14
o 0o = 15 G13
) 3 _.___
i -
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The bound on the right hand side is essentially the best possible, wnder any 2N + 1 -
' point method of approximation.
N This result [1] was dscovered bv the author under
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: previous ARO sponsorship. While this result was reported earlier, we mention it 4
! here again, since it led to, and is related to the results (b), (c) which follow. 'j
; (b) Under the same conditions in (a) above one sets e
3 N 2-
2 2 ,j
s 10 = (1- I

then
&
1) lg(x) - k_l_ y TP &Y lz¢ expl-m(z) '} . i

That is, we have an explicit rational spproximation of g for which the error

g!}mges at the same optimal rate as that in (9). Because of its optimal nature o
this linear rational approximation procedure is very nearly as good as the best ‘
rational approximation of g , of the same degree. It is curious that the (almost) o

optimal interpolation points are the "sinc" points (7).
(c) Other consequences of the result (b):
(1) It is easy to develop a Thiele algorithm which yields the

=
o
";:;:j

] rational function in (11).
(i1) The problem of poles on the interval of approximation, which has
L: plagued users of rational function in the past, has been eliminated. :.-
(111) We have described a space of finctions in which rational spproximation .-
works. We can thus tell a priori, when e.g. the "Ro-algorithu" for s
prediction, or the ODE method of Bulirsh and Stoer work. _'__
. |




o :
=
R
(iv) The transformation ]
i":. 3
1
l (12) z = 5;,.-” =’§
: is a conformal map of the wnit disc onto the right half plane. Tt
. also transforms the rational function in (11) into another rational -4
function for interpolation over (0,=) , and a description of a -]
space of functions (e.g., analyticity and boundedness on the right-
(1) r-
half plane, of class Lip(l/q) on (0,»)) for which this works. =
The corresponding rational function approximation is ;
)
t"i
N (&G N E-§ v
13) G(g) = TEWTGEY ° v(E) = ) -
k'Z-N E'Ek (] Ek léf N E:Ek .
kh /2 N, /2
vhere g =e , and the error is O[N1 exp{-n(ﬁ) }] , and vhere

we have also assumed that G(0) = G(«=) = O .

(v) Similary £ = e¥ ylelds a rational function of e" ; it describes a
space of function for which this is an optimal approximation, and
in particular, it describes a space, and a set of interpolation

points (w, = kh) for which P. Wynn's "epsilon algorithm" - which
includes the Pade method - alvays works. 5

We hope to have these results in your office by the end of January, 1983. !-
(vi) Our result plays the same role for rational approximation as the
Chebyshev polynamials play for approximation by polynomials. If

F 1is analytic in the ellipse ER with foci at + 1 and sum of -.-
semi-axes equal to R (R > 1) then Lagrange interpolation at the U
nodes of the Chebyshev polynomtal T, produces very nearly as

good a polynamial of degree n approximation to F on [-1,1] -

as the best (uniform) polynomisl approximation. Since the best 2
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wniform polynomial approximation is unduly difficult to obtain, one
is almost always satisfied with the nearly best approximation pro-

vided by the Chebyshev polynomial.
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